I try to solve this question :
How many convex figures of given area are there ?
The figures should be polygons formed by these types of lines :
The possible figures formed by the first (2nd) type of lines I denote A_n (B_n).
n - is the area of figure, unit (U) is triangle on the picture above.
This choice of possible lines is equivalent to the choice
Another possibility is to study convex polydrafters (D_n)
Relations
B_4n < A_n < B_n
A_n < D_n < A_4n
Images
A_2 A_4
A_6 A_8 A_8*
B_6 B_8 B_12
D_2 D_3 D_4
D_5 D_6
A_8
A_12
B_16
D_12
X* is set X without the longest piece
some other images
n | A_n | B_n | D_n | A_4n | B_4n | B_16n | |
1 | 0 | 0 | 1 | 3 | 0 | 6 | |
2 | 2 | 0 | 4 | 8 | 3 | 14 | |
3 | 0 | 0 | 3 | 11 | 1 | 23 | |
4 | 3 | 0 | 7 | 17 | 6 | ||
5 | 0 | 0 | 7 | 21 | 0 | ||
6 | 5 | 1 | 13 | 31 | 9 | ||
7 | 0 | 0 | 9 | 33 | 1 | ||
8 | 8 | 3 | 15 | 45 | 14 | ||
9 | 0 | 0 | 9 | 52 | 3 | ||
10 | 7 | 0 | 14 | 63 | 12 | ||
11 | 0 | 0 | 12 | 72 | 1 | ||
12 | 11 | 1 | 27 | 91 | 23 | ||
13 | 0 | 0 | 19 | ||||
14 | 11 | 0 | 29 | ||||
15 | 0 | 0 | 26 | ||||
16 | 17 | 6 | |||||
17 | 0 | 0 | |||||
18 | 15 | 1 | |||||
19 | 0 | 0 | |||||
20 | 21 | 0 | |||||
21 | 0 | 0 | |||||
22 | 19 | 1 | |||||
23 | 0 | 0 | |||||
24 | 31 | 9 | |||||
25 | 0 | 0 | |||||
26 | 26 | 1 | |||||
27 | 0 | 0 | |||||
28 | 33 | 1 | |||||
29 | 0 | 0 | |||||
30 | 34 | 1 | |||||
31 | 0 | 0 | |||||
32 | 45 | 14 | |||||
33 | 0 | 0 | |||||
34 | 37 | 1 | |||||
35 | 0 | 0 | |||||
36 | 52 | 3 | |||||
37 | 0 | 0 | |||||
38 | 49 | 3 | |||||
39 | 0 | 0 | |||||
40 | 63 | 12 | |||||
41 | 0 | 0 | |||||
42 | 64 | 4 | |||||
43 | 0 | 0 | |||||
44 | 72 | 1 | |||||
45 | 0 | 0 | |||||
46 | 70 | 1 | |||||
47 | 0 | 0 | |||||
48 | 91 | 23 |
Table of A_4n