Symmetry

The figures can have 10 types of symmetry (s0 is no symmetry)

lines are axes of symmetry, 2 means 180 deg. rotation, 3 means 120 deg. rotation and 6 means 60 deg. rotation

Results

area

# figures

symmetry

# sides

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

  3 4 5 6 7 8 9 10 11 12

1

3

1

0

0

1

1

0

0

0

0

0

1 2 0 0 0 0 0 0 0 0

2

8

1

0

2

3

1

0

1

0

0

0

2 6 0 0 0 0 0 0 0 0

3

11

5

0

0

3

2

0

0

0

0

1

1 7 1 2 0 0 0 0 0 0

4

17

5

2

2

5

3

0

0

0

0

0

1 11 3 2 0 0 0 0 0 0

5

21

11

1

1

4

3

1

0

0

0

0

0 8 7 6 0 0 0 0 0 0

6

31

10

5

4

9

2

0

0

1

0

0

2 16 5 8 0 0 0 0 0 0

7

33

19

2

2

6

4

0

0

0

0

0

0 9 11 11 1 1 0 0 0 0

8

45

24

3

4

8

5

0

1

0

0

0

2 19 6 14 4 0 0 0 0 0

9

52

35

1

2

9

4

0

0

0

0

1

1 12 12 22 4 1 0 0 0 0

10

63

33

7

7

13

3

0

0

0

0

0

0 15 14 25 6 3 0 0 0 0

11

72

52

2

3

9

5

0

1

0

0

0

0 9 23 27 9 4 0 0 0 0

12

91

57

5

7

15

6

0

0

0

0

1

1 30 10 31 13 6 0 0 0 0

13

96

72

5

4

11

4

0

0

0

0

0

0 9 21 37 23 6 0 0 0 0

14

120

81

9

9

17

4

0

0

0

0

0

0 16 23 45 23 11 1 1 0 0

15

134

99

5

6

15

8

1

0

0

0

0

0 18 25 53 22 16 0 0 0 0

16

150

106

9

9

18

8

0

0

0

0

0

1 24 23 48 34 18 2 0 0 0

17

170

141

4

5

14

5

1

0

0

0

0

0 9 30 66 42 20 3 0 0 0

18

203

145

12

15

25

5

0

1

0

0

0

2 26 26 68 46 29 4 2 0 0

19

209

166

10

7

20

6

0

0

0

0

0

0 8 37 70 53 34 5 2 0 0

20

245

200

8

8

19

9

1

0

0

0

0

0 27 31 70 63 46 8 0 0 0

21

272

225

7

9

22

8

0

0

1

0

0

0 19 32 90 81 41 6 3 0 0

22

305

235

20

17

30

3

0

0

0

0

0

0 16 41 88 82 62 14 2 0 0

23

333

281

8

12

21

8

1

2

0

0

0

0 12 51 101 91 61 15 2 0 0

24

376

302

14

14

32

12

0

0

1

0

1

2 46 24 93 108 75 24 3 0 1

25

385

339

9

7

23

7

0

0

0

0

0

1 10 28 123 116 84 17 6 0 0

26

453

382

14

19

31

6

0

1

0

0

0

0 16 44 122 129 101 33 8 0 0

27

482

411

16

13

32

9

0

0

0

0

1

1 17 50 140 130 109 27 7 1 0

28

517

441

18

17

33

8

0

0

0

0

0

0 29 38 125 148 121 49 7 0 0

29

577

515

11

13

28

8

2

0

0

0

0

0 8 56 144 181 129 46 12 1 0

30

648

544

26

25

45

8

0

0

0

0

0

0 34 42 158 158 178 63 14 0 1

31

642

564

15

17

36

10

0

0

0

0

0

0 9 63 144 193 177 38 17 1 0

32

745

667

15

17

33

12

0

1

0

0

0

2 32 50 150 205 200 87 18 1 0

33

786

709

15

16

35

9

1

0

1

0

0

0 19 53 175 250 193 74 20 2 0

34

858

742

29

29

52

6

0

0

0

0

0

0 16 55 170 241 243 105 25 2 1

35

902

822

19

15

36

9

1

0

0

0

0

0 14 58 206 271 222 94 35 2 0

36

1001

892

21

24

49

14

0

0

0

0

1

1 49 52 183 247 291 142 30 5 1

37

1007

920

19

18

41

9

0

0

0

0

0

0 9 54 192 312 285 120 32 2 1

38

1172

1060

27

29

49

6

1

0

0

0

0

0 15 69 199 321 354 158 52 4 0

39

1191

1073

22

26

53

16

0

1

0

0

0

0 19 74 225 357 306 154 49 6 1

40

1279

1164

29

24

50

12

0

0

0

0

0

0 40 45 207 326 389 208 61 3 0

41

1364

1279

13

21

42

7

1

1

0

0

0

0 9 65 239 407 390 191 52 10 1

42

1516

1363

38

38

66

10

0

0

1

0

0

0 35 63 238 407 424 253 88 5 3

43

1486

1371

31

24

52

8

0

0

0

0

0

0 8 64 271 395 448 221 64 15 0

44

1701

1589

19

25

51

15

0

2

0

0

0

0 29 79 242 408 517 329 83 11 3

45

1751

1614

29

30

62

14

1

0

0

0

1

0 28 68 282 472 555 228 105 12 1

46

1896

1725

47

45

73

6

0

0

0

0

0

0 19 69 276 456 583 356 119 17 1

47

1942

1817

26

29

53

14

2

1

0

0

0

0 12 103 284 521 569 323 113 14 3

48

2122

1968

32

35

67

19

0

0

0

0

1

1 60 69 245 495 671 420 143 15 3

49

2119

2004

25

23

57

10

0

0

0

0

0

1 11 48 275 634 623 360 140 26 1

50

2447

2284

39

42

72

8

1

1

0

0

0

2 21 60 323 568 755 515 177 21 5

It's easy to prove that there are no s8 figures.