Eternity


Unfortunately the description of Eternity pieces is a breach of C.Monckton's copyright.
He does not wish the description of the pieces to be published in any form.

The pieces can be ordered and rotated in 209! 12^209 ways
209! 12^209 = 1.78 x 10^621 =
17833793934355021599464216158237055788952960455559
39664896828810374848966374425926802848828727014922
61315990512949829112824604442584684546438771083512
57522295775962865471757143571136280296815169246798
45693750081703198771035364248258740024533100467224
05456654075512366028886554451498575385935026198748
07077399743889281160970816002686003875771569106593
01735277688365076643732669480438110916866047044038
03926867875412469936614920088622123227132052495512
49471597235436985731148744631608948167694584536105
38446606237915444069558620656688440162999906372899
03387908414394356203520000000000000000000000000000
0000000000000000000000

Solution

unfortunately unknown ...
some attempts

Eternity-like puzzles

The set of 770 pieces I used.
Result no. 1 
Result no. 2 
Result no. 3  with small ATG part
(Another results are here by Brendan Owen and Mark Pursey)

Bigger puzzles

Dodecagons "Squares" Tiles
240 pieces
299 pieces
336 pieces
375 pieces
448 pieces
627 pieces
3 pieces
4 pieces
5 pieces
10 pieces
14 pieces
20 pieces
24 pieces
30 pieces
33 pieces
65 pieces
120 pieces
260 pieces
64 pieces   *
192 pieces
260 pieces   *

Statistics

# of sides # of pieces
in Eternity
% # of pieces
in 770 set
%
4 0 0 1 0.1
5 4 1.9 9 1.2
6 20 9.6 43 5.6
7 50 23.9 136 17.7
8 56 26.8 227 29.5
9 48 23.0 198 25.7
10 27 12.9 128 16.6
11 3 1.4 20 2.6
12 1 0.5 8 1.0
  209 100 770 100

 

# of angles
> 180
# of pieces
in Eternity
% # of pieces
in 770 set
%
0 4 1.9 11 1.4
1 59 28.2 150 19.5
2 103 49.2 387 50.2
3 39 18.7 201 26.1
4 4 1.9 21 2.8
  209 100 770 100

Against the grain

Few facts about Eternity :
1. The division of E pieces into triangles is unambiguous. ( This is not true for hexadudes. )
2. For every piece we can therefore decide whether it is aligned with uderlying grid. Pieces can go 'against the grain' in three different ways. I use three different colors for these pieces. ( some examples )
3. The boudaries of colored regions must be 'perpendicular'.

Parity

for explanation - Ed Pegg's page

Numbers of E pieces :

up/down parity left/right parity east/west parity
0 - 116
2 - 90
4 - 3
0 - 89
2 - 112
4 - 8
0 - 51
2 - 121
4 - 32
6 - 5

List of parities of E pieces

One attempt colored by parity  - (balanced, plus two, plus four, plus six)
another one and the last one

Links

Ed Pegg Jr's Mathpuzzle.com
Brendan Owen's web page
Mark Pursey's web page


main page